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ABSTRACT 

The current TR” combined radarhadiometer pro- 
filing  algorithm  compensates for the known shortcom- 
ings of each instrument by  exploiting the strengths of 
the other. It turns out  that the strengths/weaknesses of 
the radiometer measurements are not as they seemed 
before T R ” .  Specifically, the current algorithm pre- 
sumes that  the radiances at the various  frequencies 
are approximately independent (to compute  probabil- 
ity weights). It turns out there are strong correlations 
between the channels. New estimates of the condi- 
tional covariance of the radiances given the rain should 
make the probability  weights  more  realistic.  The  second 
problem stems from the representativity of the T R ”  
cloud database. It turns out  that the database is signif- 
icantly off, especially at higher  frequencies. To reduce 
the rain over-estimation produced by this discrepancy, 
the database was re-sampled and mean rain-radiances 
relations were re-derived.  The third problem  is the lack 
of any ice estimates. The reason was the large  number 
of unknown variables involved. A principal  component 
analysis has revealed that the frozen  hydrometeor  pro- 
files  can  be approximated by a  single  variable  each for 
ice,  snow, and graupel. A straightforward method is cur- 
rently being implemented to estimate these additional 
variables, and to include them in the output structure of 
the algorithm.  Linear  formulas  will  enable  users to re- 
construct the corresponding graupel/snow/ice  profiles, 
and estimate the corresponding latent heating. 

INTRODUCTION 

The “day-1” version of the combined  algorithm that 
was operational at launch was  deliberately  kept  simple 
to reduce the opportunities for serious errors. We fol- 
lowed the procedure described  in ([3]): a) grouping the 
radar beams  according to the TMI beams  within  which 
they fall,  we  consider that several  values for the rain 
drop-size-distribution (DSD) normalized  mean  diame- 
ter D” are possible  (see [4] for the precise  definition 
of the DSD parametrization used); b) for each  possi- 
ble value of  Dl’,  Dl’-specific 2-R and k-R relations are 
used to invert each radar reflectivity  profiles  within the 
TMI-delimited group into a  possible  (Dl’-dependent) 
rain-rate profile,  using an inversion that is  very  close 
to the one used  by the radar-only profiling  algorithm 
2A25; c) then, for each value of  Dl’, the algorithm  cal- 

culates  from the rain profiles  a  predicited  10.7GHz V- 
pol  radiance T(D”), the rain-radiance relation having 
been  derived  off-line by taking an average  over numer- 
ous cloud  simulations; d) finally, the difference between 
the predictions and the measured radiance 7 is  used to 
calculate  a  weight w(DN) = exp(-0.5(T(Dt’) -7)2/03 

which  quantifies  how  well  (or  badly) the radiance cor- 
responding to the radar-derived rain-rates for each D” 
fit the observed  radiance (the amount of  “slack” (T, that 
must  be  allowed when considering the closeness of the 
candidate radiances to the measurement is essentially 
the 7-dependent error bar from the same off-line  cloud 
simulations that produced the average rain-radiance re- 
lation). The  combined estimate of the rain-rate profile  is 
the average of the Dl’-dependent radar-derived profiles 
weighted  by the TMI-derived w(D”)’s. 

This  “day-1”  algorithm  is  based on the Bayesian math- 
ematical  approach  described  in ([3]). As such, it min- 
imizes the variance between the estimated rain and 
the actual rain, given the measured radar reflectivities 
and the measured  10.7GHz V-pol radiance (and given 
the admittedly simplified  physical  model for the depen- 
dence of the observations on the rain). Some  time af- 
ter the launch of T R ” ,  we  derived and implemented 
an improved  version of this algorithm, one that could 
take into account the “tall vector”  consisting of all the 
TMI observations rather than just  the 10.7GHz radi- 
ance. To that end, step c)  in the day-1 algorithm was 
modified so that the “tall-vector” algorithm computes 
predicted  19GHz,  22GHz and 37GHZ radiances from 
each  radar-derived  Dl’-dependent rain profile.  These 
rain-radiances relations were derived  off-line  by  calcu- 
lating conditional means using the TMI cloud  simula- 
tions database (the one used  for the passive  microwave 
profiling  algorithm  2A12), after having  classified the 
samples  in the database according to the integrated ice 
content - three levels of  ice are used, and the appro- 
priate relation is  selected  according to the value of the 
85GHz  TMI radiance  compared with two thresholds (a 
value  below the low  threshold  forces the algorithm to 
use the “high-ice” conditional mean rain-radiances re- 
lations,  while  a  value  above the high threshold selects 
the “low-ice”  relations).  In addition, step d) was mod- 
ified to calculate the weights  according to the total dif- 
ferences  in  all TMI channels.  Thus the weights in the 
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“tall-vector” algorithm are given  by 

~ ( 0 ” )  = exp(-0.5x(Ti(D”) - T ~ ) ~ / U ; $ ) ,  (1) 
i 

in which the oTi’s used are admittedly somewhat  heuris- 
tic estimates of the Ti-dependent error bars  from the 
2A12 cloud simulation database. 

Comparisons between the “day-1”  surface rain esti- 
mates and the surface rain estimated by 2A25 over  sev- 
eral orbits show good agreement. Only  in the case of 
stratiform rain with significant radar attenuation does  a 
bias appear between the two  algorithms. 

While the comparisons  above  (as  well  as  time- and 
space-average  comparisons)  give  a  favorable  impression 
of the performance of the combined  algorithm,  we  have 
identified three significant  weaknesses  in the algorithm. 
These are listed by order of importance and described 
in the next section. 

PROBLEMS AND IMPROVEMENTS 
The  use of equation (1) to compute the weights to 

assign to the various DSD parameters in contention pre- 
sumes that the various TMI measurements are indepen- 
dent. Lacking any quantitative information about the 
possible correlations between the brightness tempera- 
tures at the different frequencies and polarisations, this 
assumption of independence is reasonable and does ap- 
pear to have  produced an algorithm  whose  estimates 
are not flagrantly  biased. However, our analysis of the 
joint behavior of the radiances in the 2A12 cloud sim- 
ulations database has  revealed  very strong correlations 
between the various channels ([ll). 

Our  results  in ([l]) imply that (1) should  be  replaced 
by the gaussian distribution with the appropriate (non- 
diagonal) conditional covariance  matrix,  computed for 
each  ice  category. 

In addition, the calculation of the mean  radiances Ti 
from the 2A12 cloud  simulations database, in step c), 
assumes that the database is representative of tropical 
rain. As a  comparison of the marginal  histograms of the 
database radiances and of the radiances  actually  mea- 
sured by TMI shows, the database represents the  ac- 
tual brightness temperatures at 10.7GHz much better 
than the ones at 37GHz. This mismatch  between the 
database and the actual measurements is quite  likely to 
produce  a  bias, although the effect  would  be  less  pro- 
nounced  in the “day-1” algorithm  since the discrepancy 
between database and measurements is not very  pro- 
nounced at 10.7GHz. 

In order to obtain mean rain-radiances relations 
and corresponding conditional covariance  matrices that 
faithlfully  reflect the behavior of tropical rain and its 
microwave signature, it is necessary to start with a 
database which  accurately  mimics the joint statistics 

of the observations. To do so, starting with the cur- 
rent 2A12 cloud simulations database, we intend to 
sub-sample the simulated profiles  using the extensive 
archive of observations  which the TMI algorithm l B l l  
has  been  producing  over the last  two  years (this is the 
data  that we  used to produce the histograms in figures 
14 and 16). 

More  specifically,  we  analyzed the covariance  from 
our extensive set of granules, then found the formulas 
for the two  eigenvectors Ti and Ti of the 9 x9 covari- 
ance  matrix  with the highest  eigenvalues;  since  these 
vectors are necessarily uncorrelated and therefore, to 
first  order,  essentially independent, we then partitioned 
the joint values into 16x14 ”bins”, of about 10 per- 
centiles  each. Given this partitioning scheme,  for each 
sample  in the original database, we can compute its 
Ti and Ti (linear  combinations of the sample  profile’s 
brightness temperatures), and then select a proportion 
from  each  bin  according to the sample proportions (E 

10%) computed  for the representative granules. The se- 
lected  simulated  profiles are not absolutely representa- 
tive of all  tropical rain, but they reproduce the joint be- 
havior of the radiances in the raw TMI measurements, 
and as  such  form  a database that is far more  realistic 
than the original. 

RESULTS 
Using the sub-sampled  “improved” database obtained 

as  described  above,  we  derived  average rain-radiances 
relations to replace the “naive” ones currently imple- 
mented  in 2B31, and thus avoid  having to refer to any 
database in real time. 

To that end, we  used the result ([l]) that the “tall” 
vector of radiances  can  be quite adequately described 
using the two  eigenvectors 7’; and Ti (the first 3 eigen- 
values for the covariance maaix of the brightness tem- 
peratures in the current 2A12 database are, in decreas- 
ing  order, 5652 > 965 > 314, while for our archive of 
l B l l  granules they are 1711 > 275 > 95; in both cases, 
the third eigenvalue is already better than an order of 
magnitude below the first).  The  problem of estimat- 
ing the radiances  from  a  profile  vector of rain-rates can 
therefore be  reduced to estimating the corresponding 
values of Ti and Ti. Since it is operationally very desir- 
able to use  a  subset of all the rain-rates to estimate Til, 
i = 1,2 (or, in  effect,  “distill” the information contained 
in the database into two parametrized functional rela- 
tions,  we  looked  for the “optimal” linear combination of 
the rain-rates that will  “best” estimate each Ti. Because 
the problem of finding the best relation between T,! and 
a  combination R’ of the vertical rain-rates Rj is  a  priori 
non-linear,  we  modified it slightly  by trying to maximize 
the correlation’s numerator E{T/ R’} keeping E{RI2} 
constant. This  in  effect  minimizes the scatter between 
R’ and T,!. Once the coefficients of R’ were found, the 



mean and variances of Ti given R’ were  easily obtained, 

uncertainty. 
We have tested this procedure on its  exact  mirror 

image,  namely obtaining mean radiances-rain relations 
and the associated conditional covariance,  using  a (the- 
oretically interesting) database of nadir passive  mi- 
crowave  observations.  In that case (taken from [l]), the 
first rain eigenvector (the equivalent of TI above) turns 
out to be  simply the vertically-averaged rain-rate, and 
the optimal linear combination of radiances that corre- 
lates best with it (the equvalent of R’ above) turns out 

0.1T85.5X The  components of the vector  reconstructed 
from the single  “optimal” relation are encouragingly 
close to the exact values.  The fact that the approach 
produces satisfactory results in the case of estimating 
the rain from the radiances leads us to believe that it 
will  work very well indeed in the converse  case of inter- 
est to us here, since  we are then starting with the richer 
set of information (the rain profile) and looking to pre- 
dict  a  small number of corresponding  observations (the 
radiances). 

As to the problem of estimating graupel,  ice and snow 
profiles, along with a rain profile, the main  obstacle  is 
the large number of unknown  variables  involved. We 
used  a  principal component analysis to determine just 
how many variables were essential to describe  a rain 
profile. A detailed analysis of the rain profiles  simulated 
in the T R ”  passive  microwave  cloud database showed 
that the set of variables (R1, . . . , Rs), representing the 
rain rate in the eight layers of the atmosphere extend- 
ing from the surface up to a  height of 4.5 km, can  be 
replaced with eight linear combinations (R’, , - . , Ri) 
whose  variances decrease so rapidly that the variance 
of RI, is already an order of magnitude smaller than 
the variance of R’, ([ 11). This  means that one can ade- 
quately describe the same rain profile  using R’, and RL 
and the archival mean values  over  all rain profiles  in the 
database of the remaining six variables (I?;, . . . , Ri). A 
similar  analysis of the rain profiles independently esti- 
mated by the T R ”  radar rain-profiling  algorithm  con- 
firmed this finding. It is interesting to note that in both 
cases the first new variable R’, was the average of the 
rain rate over the column and the second  was the dif- 
ference between the average rain rates above and be- 
low 2.5 km. The fact that the measurements indepen- 
dently confirmed the result obtained from the simula- 
tions shows that this reduction in the number of vari- 
ables required to describe the rain is not an artifact of 
the database and is therefore a  potentially  very  useful 
tool. 

Indeed, it turned out that such  a reduction can  be 
obtained not just for the rain profiles but also and in 
a  more dramatic way  for the graupel,  snow and ice 

* along with the forward rain-radiances relation and its 

to be 0.42T10.7~ + 0.8T19.3~ - 0.1T21.3~ - O.06T37~ + 

profiles.  In  fact,  a “test” principal component analysis 
performed on a  simulated squall line showed that the 
first  variable G’, for the graupel profiles  is  a  slightly 
unevenly-weighted  average of the graupel between 3 
and 13.5 km (with  a peak weight for the layer at 5 
km), the second  variable Ga is the difference between 
the average graupel below and above 6.5 km, and the 
ratio of the variance of Ga to G’, is 0.075, or more 
than an order of magnitude. Similarly, this test case 
revealed that the first  variable Si for the snow profiles 
is a  slightly  unevenly-weighted  average of the snow  be- 
tween 5 and 14 km (with  a  peak  weight for the layer at 
9 km), and the first  variable 1; for the ice  profiles  is  a 
slightly  unevenly-weighted  average of the ice between 
8.5 and 15.5 km (with a  peak  weight for the layer at 
12 km), the second  eigenvariables  in both cases  having 
significantly  lower  variance. 

These  preliminary  results  show that knowledge of the 
four  principal  component  variables G’,, Ga and Si, and 
I: should  allow an adequate reconstruction of the cor- 
responding  hydrometeor  profiles. 
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